STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells.

نویسندگان

  • T Nosaka
  • T Kawashima
  • K Misawa
  • K Ikuta
  • A L Mui
  • T Kitamura
چکیده

Signal transducers and activators of transcription (STATs) play key roles in growth factor-mediated intracellular signal transduction. In the present study using a constitutively active STAT5 mutant, we show that STAT5 has pleiotropic functions regulating cell proliferation, differentiation and apoptosis in an IL-3-dependent Ba/F3 cell line. The mutant STAT5 possessed constitutive tyrosine phosphorylation and DNA binding activity, induced expression of bcl-xL and pim-1 in the absence of IL-3 in Ba/F3 cells, and rendered Ba/F3 cells factor-independent. Unexpectedly, IL-3 treatment of the factor-independent Ba/F3 cells expressing the constitutively active STAT5 resulted in apoptosis within 24 h, or differentiation followed by cell death. In these cells, mRNA expression of growth inhibitory genes downstream of STAT5 such as CIS, JAB/SOCS-1/SSI-1, and p21(WAF1/Cip1) was highly induced, correlating with prolonged hyper-phosphorylation of the mutant STAT5 after IL-3 stimulation. Of the STAT5-regulated genes, we found that constitutive expression of JAB/SOCS-1/SSI-1 was sufficient to induce apoptosis of Ba/F3 cells, while p21(WAF1/Cip1) could induce differentiation of these cells. In contrast, constitutive expression of pim-1 was sufficient to induce IL-3-independent growth of Ba/F3 cells. These findings suggest that a single transcription factor regulates cell fate by varying the intensity and duration of the expression of a set of target genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of apoptosis and necrosis in human acute erythroleukemia cells by inhibition of long non-coding RNA PVT1

Recent advances in molecular medicine have proposed new therapeutic strategies for cancer. One of the molecular research lines for the diagnosis and treatment of cancer is the use of long non-coding RNAs (LncRNAs) which are a class of non-coding RNA molecules longer than 200 base pairs in length that act as the key regulator of gene expression. Different aspects of cellular activities like cell...

متن کامل

Mesenchymal Stem Cells as a Feeder Layer Can Prevent Apoptosis of Expanded Hematopoietic Stem Cells Derived from Cord Blood

Umbilical cord blood (UCB) has been used for transplantation in the treatment of hematologic disorders as a source of hematopoietic stem cells (HSCs). Because of insufficient number of cord blood CD34+ cells, the expansion of these cells seems to be important for clinical application. Mesenchymal stromal cells (MSCs), playing an important role in HSCs maintenance, were used as feeder layer. Apo...

متن کامل

The role of STAT5 proteins in the regulation of normal hematopoiesis in a cord blood model.

The signal transducers and activators of transcription - STAT5A and STAT5B - are responsible for the control of proliferation, differentiation and apoptosis, via their effect on gene expression. They are activated by the binding of many cytokines, growth factors and hormones to their receptors on the cell surface. Many of these cytokines regulate hematopoietic cell development; therefore, STAT5...

متن کامل

Co-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds

Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a pr...

متن کامل

بررسی تأثیر مهار بیان ژن نوکلئوستمین بوسیله siRNA بر مهار رشد و القاء تمایز در رده سلولی NB4 لوسمی پرومیلوسیتیک حاد انسانی

 Background & Aims: Acute promyelocytic leukemia (APL) is a malignant hematopoietic disorder caused by indefinite proliferation and lack of differentiation of leukemia stem cells. Elucidation of signaling pathways involved in leukemic stem cells are current strategies in treatment of leukemias. In this content, nucleostemin (NS) plays a critical role in proliferation and self renewal of stem an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 18 17  شماره 

صفحات  -

تاریخ انتشار 1999